AS and A-Level Formulae that students are expected to know:

Pure Mathematics

Quadratic Equations

$$
a x^{2}+b x+c=0 \text { has roots } \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Laws of Indices

$a^{z} a^{y} \equiv a^{x+y}$
$a^{x} \div a^{7} \equiv a^{z-y}$
$\left(a^{x}\right)^{y} \equiv a^{2 y}$

Laws of Logarithms

$x=a^{n} \Leftrightarrow n=\log _{4} x$ for $a>0$ and $x>0$
$\log _{d} x+\log _{a} y \equiv \log _{a}(x y)$
$\log _{e} x-\log _{\alpha} y \equiv \log _{a}\left(\frac{x}{y}\right)$
$k \log _{a} x \equiv \log _{a}\left(x^{k}\right)$

Coordinate Geometry

A straight line graph, gradient m passing through $\left(x_{1}, y_{1}\right)$ has equation $y-y_{1}=m\left(x-x_{1}\right)$

Straight lines with gradients m_{1} and m_{2} are perpendicular when $m_{1} m_{2}=-1$

Sequences

General term of an arithmetic progression:
$u_{n}=a+(n-1) d$
General term of a geometric progression:
$u_{n}=a r^{n-1}$

Trigonometry

In the triangle $A B C$

$$
\begin{aligned}
& \text { Sine rule: } \quad \frac{a}{\sin A}-\frac{b}{\sin B}-\frac{c}{\sin C} \\
& \text { Cosine rule: } \quad a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} a b \sin C \\
& \cos ^{2} A+\sin ^{2} A \equiv 1 \\
& \sec ^{2} A \equiv 1+\tan ^{2} A \\
& \operatorname{cosec}^{2} A \equiv 1+\cot ^{2} A \\
& \sin 2 A \equiv 2 \sin A \cos A \\
& \cos 2 A \equiv \cos ^{2} A-\sin ^{2} A \\
& \tan 2 A \equiv \frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Mensuration

Circumference and area of circle, radius r and diameter d :

$$
C-2 \pi r=\pi d \quad A-\pi r^{2}
$$

Pythagoras' theorem:
In any right-angled triangle where a, b and c are the lengths of the sides and c is the hypotenuse, $c^{2}=a^{2}+b^{2}$

Area of a trapezium $=\frac{1}{2}(a+b) h$, where a and b are the lengths of the parallel sides and h is their perpendicular separation.

Volume of a prism $=$ area of cross section \times length
For a circle of radius r, where an angle at the centre of θ radians subtends an arc of length s and encloses an associated sector of area A :
$s=r \theta \quad A=\frac{1}{2} r^{2} \theta$

Calculus and Differential Equations

Differentiation
Function Derivative

x^{n}	$n x^{n-1}$
$\sin k x$	$k \cos k x$
$\cos k x$	$-k \sin k x$
$\mathrm{e}^{k x}$	$k \mathrm{e}^{k x}$
$\ln x$	$\frac{1}{x}$
$\mathrm{f}(x)+\mathrm{g}(x)$	$\mathrm{f}^{\prime}(x)+\mathrm{g}^{\prime}(x)$
$\mathrm{f}(x) \mathrm{g}(x)$	$\mathrm{f}^{\prime}(x) \mathrm{g}(x)+\mathrm{f}(x) \mathrm{g}^{\prime}(x)$
$\mathrm{f}(\mathrm{g}(x))$	$\mathrm{f}^{\prime}(\mathrm{g}(x)) \mathrm{g}^{\prime}(x)$

Integration

Function
x^{n}

$$
\frac{1}{n+1} x^{n+1}+c, n \neq-1
$$

$\cos k x$

$$
\frac{1}{k} \sin k x+c
$$

$\sin k x$ $-\frac{1}{k} \cos k x+c$
$e^{k x}$ $\frac{1}{k} \mathrm{e}^{k x}+c$
$\frac{1}{x}$

$$
\ln |x|+c, x \neq 0
$$

$\mathrm{f}^{\prime}(x)+\mathrm{g}^{\prime}(x) \quad \mathrm{f}(x)+\mathrm{g}(x)+c$
$\mathrm{f}^{\prime}(\mathrm{g}(x)) \mathrm{g}^{\prime}(x)$
$\mathrm{f}(\mathrm{g}(x))+c$

Area under a curve $=\int_{a}^{b} y \mathrm{~d} x(y \geqslant 0)$

Vectors

$|x \mathbf{i}+y \mathbf{j}+z \mathbf{k}|=\sqrt{\left(x^{2}+y^{2}+z^{2}\right)}$

Statistics

The mean of a set of data: $\bar{x}=\frac{\sum x}{n}=\frac{\sum \mathrm{f} x}{\sum \mathrm{f}}$

The standard Normal variable: $Z=\frac{X-\mu}{\sigma}$ where $\quad X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$

Mechanics

Forces and Equilibrium

Weight $=$ mass $\times g$
Friction: $F \leqslant \mu R$
Newton's second law in the form: $F=m a$

Kinematics

For motion in a straight line with variable acceleration:
$v=\frac{\mathrm{d} r}{\mathrm{~d} t} \quad a=\frac{\mathrm{d} v}{\mathrm{dt}}=\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}$
$r=\int v \mathrm{~d} t \quad v=\int a \mathrm{~d} t$

