AS and A-Level Formulae that students are expected to know:

Pure Mathematics

Quadratic Equations

$$ax^2 + bx + c = 0$$
 has roots
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Laws of Indices

$$a^{x}a^{y} \equiv a^{x+y}$$

$$a^x + a^y \equiv a^{x-y}$$

$$(\alpha^x)^y \equiv \alpha^{xy}$$

Laws of Logarithms

$$x = a^n \Leftrightarrow n = \log_a x \text{ for } a > 0 \text{ and } x > 0$$

$$\log_a x + \log_a y \equiv \log_a (xy)$$

$$\log_a x - \log_a y \equiv \log_a \left(\frac{x}{y}\right)$$

$$k \log_a x \equiv \log_a (x^k)$$

Coordinate Geometry

A straight line graph, gradient m passing through (x_1, y_1) has equation $y - y_1 = m(x - x_1)$

Straight lines with gradients m_1 and m_2 are perpendicular when $m_1m_2=-1$

Sequences

General term of an arithmetic progression:

$$u_n = a + (n-1)d$$

General term of a geometric progression:

$$u_n = \alpha r^{n-1}$$

Trigonometry

In the triangle ABC

Sine rule:
$$\frac{a}{\sin A} - \frac{b}{\sin B} - \frac{c}{\sin C}$$

Cosine rule:
$$a^2 = b^2 + c^2 - 2bc\cos A$$

Area
$$=\frac{1}{2}ab\sin C$$

$$\cos^2 A + \sin^2 A \equiv 1$$

$$sec^2 A \equiv 1 + tan^2 A$$

$$cosec^2 A \equiv 1 + cot^2 A$$

$$sin2A \equiv 2sinAcosA$$

$$\cos 2A \equiv \cos^2 A - \sin^2 A$$

$$\tan 2A \equiv \frac{2 \tan A}{1 - \tan^2 A}$$

Mensuration

Circumference and area of circle, radius r and diameter d:

$$C = 2\pi r = \pi d$$
 $A = \pi r^2$

Pythagoras' theorem:

In any right-angled triangle where a, b and c are the lengths of the sides and c is the hypotenuse, $c^2 = a^2 + b^2$

Area of a trapezium = $\frac{1}{2}(a+b)h$, where a and b are the lengths of the parallel sides and h is their perpendicular separation.

Volume of a prism = area of cross section × length

For a circle of radius r, where an angle at the centre of θ radians subtends an arc of length s and encloses an associated sector of area A:

$$z = r\theta$$
 $A = \frac{1}{2}r^2\theta$

Calculus and Differential Equations

Differentiation

Function Derivative

 x^n nx^{n-1}

 $\sin kx$ $k\cos kx$

 $\cos kx = -k \sin kx$

 e^{kx} ke^{kx}

 $\ln x$ $\frac{1}{x}$

f(x) + g(x) f'(x) + g'(x)

f(x)g(x) f'(x)g(x) + f(x)g'(x)

f(g(x)) f'(g(x))g'(x)

Integration

Function Integral

 x^n $\frac{1}{n+1}x^{n+1} + c, n \neq -1$

 $\cos kx$ $\frac{1}{k}\sin kx + c$

 $\sin kx$ $-\frac{1}{k}\cos kx + c$

 e^{kx} $\frac{1}{k}e^{kx} + c$

 $\frac{1}{x}$ $\ln |x| + c, x \neq 0$

f'(x) + g'(x) f(x) + g(x) + c

f'(g(x))g'(x) f(g(x))+c

Area under a curve $=\int_{a}^{b} y \, dx \, (y \ge 0)$

Vectors

$$|x\mathbf{i} + y\mathbf{j} + z\mathbf{k}| = \sqrt{(x^2 + y^2 + z^2)}$$

Statistics

The mean of a set of data:
$$\overline{x} = \frac{\sum x}{n} = \frac{\sum fx}{\sum f}$$

The standard Normal variable:
$$Z = \frac{X - \mu}{\sigma}$$
 where $X \sim \mathbf{N}(\mu, \sigma^2)$

Mechanics

Forces and Equilibrium

Weight = mass
$$\times g$$

Friction:
$$F \leq \mu R$$

Newton's second law in the form:
$$F = ma$$

Kinematics

For motion in a straight line with variable acceleration:

$$v = \frac{dr}{dt}$$
 $a = \frac{dv}{dt} = \frac{d^2r}{dt^2}$

$$r = \int v \, \mathrm{d}t$$
 $v = \int a \, \mathrm{d}t$