Year 1: AS Mathematics pure content Pure Mathematics

Un	uit	Title	Estimated hours
1		Algebra and functions	
	a	Algebraic expressions – basic algebraic manipulation, indices and surds	4
	<u>b</u>	Quadratic functions - factorising, solving, graphs and the discriminants	4
	<u>c</u>	Equations – quadratic/linear simultaneous	4
	<u>d</u>	Inequalities – linear and quadratic (including graphical solutions)	5
	₫	Graphs – cubic, quartic and reciprocal	5
	f	Transformations – transforming graphs – $f(x)$ notation	5
2		Coordinate geometry in the (x, y) plane	
	<u>a</u>	Straight-line graphs, parallel/perpendicular, length and area problems	6
	<u>b</u>	Circles – equation of a circle, geometric problems on a grid	7
3		Further algebra	
	a	Algebraic division, factor theorem and proof	8
	<u>b</u>	The binomial expansion	7
4		Trigonometry	
	a	Trigonometric ratios and graphs	6
	<u>b</u>	Trigonometric identities and equations	10
5		Vectors (2D)	
	₫	Definitions, magnitude/direction, addition and scalar multiplication	7
	<u>b</u>	Position vectors, distance between two points, geometric problems	7
6		Differentiation	
	a	Definition, differentiating polynomials, second derivatives	6
	<u>b</u>	Gradients, tangents, normals, maxima and minima	6
7		Integration	
	a	Definition as opposite of differentiation, indefinite integrals of χ	6
	<u>b</u>	Definite integrals and areas under curves	5
8		Exponentials and logarithms: Exponential functions and natural logarithms	12
			120 hours

Year 1: AS Mathematics applied content Statistics and Mechanics

U	nit	Title	Estimated hours
		Section A – Statistics	
1		Statistical sampling	
	<u>a</u>	Introduction to sampling terminology; Advantages and disadvantages of	1
	_	sampling	_
	<u>b</u>	Understand and use sampling techniques; Compare sampling techniques in context	2
2		Data presentation and interpretation	
	<u>a</u>	Calculation and interpretation of measures of location; Calculation and interpretation of measures of variation; Understand and use coding	4
	b	Interpret diagrams for single-variable data; Interpret scatter diagrams and	
	_	regression lines; Recognise and interpret outliers; Draw simple	8
		conclusions from statistical problems	
3		Probability: Mutually exclusive events; Independent events	3
4		Statistical distributions: Use discrete distributions to model real-world situations: Identify the discrete uniform distribution: Calculate	5
		probabilities using the binomial distribution (calculator use expected)	2
5		Statistical hypothesis testing	
	<u>a</u>	Language of hypothesis testing; Significance levels	2
	b	Carry out hypothesis tests involving the binomial distribution	5
			30 hours
		Section B – Mechanics	
6		Quantities and units in mechanics	
	<u>a</u>	Introduction to mathematical modelling and standard S.I. units of length,	1
	=	time and mass	-
	<u>b</u>	Definitions of force, velocity, speed, acceleration and weight and displacement; Vector and scalar quantities	2
7		Kinematics 1 (constant acceleration)	
	<u>a</u>	Graphical representation of velocity, acceleration and displacement	4
	<u>b</u>	Motion in a straight line under constant acceleration; <u>supp</u> formulae for constant acceleration; Vertical motion under gravity	6
8		Forces & Newton's laws	
	<u>a</u>	Newton's first law, force diagrams, equilibrium, introduction to j, j system	4
		Newton's second law, ' $F = ma$ ', connected particles (no resolving forces	
	<u>b</u>	or use of $F = \mu R$; Newton's third law: equilibrium, problems involving smooth pulleys	6
9		Kinematics 2 (variable acceleration)	
	<u>a</u>	Variable force; Calculus to determine rates of change for kinematics	4
	<u>b</u>	Use of integration for kinematics problems i.e. $r = \int v dt$, $v = \int a dt$	3
			30 hours

Year 2: Remaining A Level Mathematics pure content Pure Mathematics

Unit		Title	Estimated hours
1		Proof: Examples including proof by deduction* and proof by contradiction	3
2		Algebraic and partial fractions	
	<u>a</u>	Simplifying algebraic fractions	2
	<u>b</u>	Partial fractions	3
3		Functions and modelling	
	<u>a</u>	Modulus function	2
	<u>b</u>	Composite and inverse functions	3
	<u>c</u>	Transformations	3
	<u>d</u>	Modelling with functions*	2
		*examples may be Trigonometric, exponential, reciprocal etc.	
4		Series and sequences	
	<u>a</u>	Arithmetic and geometric progressions (proofs of 'sum formulae')	4
	<u>b</u>	Sigma notation	2
	<u>c</u>	Recurrence and iterations	3
5		The binomial theorem	
	<u>a</u>	Expanding $(a + bx)^{*}$ for rational <i>n</i> ; knowledge of range of validity	4
	<u>b</u>	Expansion of functions by first using partial fractions	3
6		Trigonometry	
	<u>a</u>	Radians (exact values), arcs and sectors	4
	<u>b</u>	Small angles	2
	<u>c</u>	Secant, cosecant and cotangent (definitions, identities and graphs);	3
		Inverse trigonometrical functions; Inverse trigonometrical functions	
	<u>d</u>	Compound [*] and double (and half) angle formulae	6
		*geometric proofs expected	
	<u>e</u>	$R\cos(x \pm \alpha)$ or $R\sin(x \pm \alpha)$	3
	f	Proving trigonometric identities	4
	g	Solving problems in context (e.g. mechanics)	2
7		Parametric equations	
	<u>a</u>	Definition and converting between parametric and Cartesian forms	3
	<u>b</u>	Curve sketching and modelling	2

Unit	Title	Estimated hours
8	Differentiation	
<u>a</u>	Differentiating sin x and cos x from first principles	2
b	Differentiating exponentials and logarithms	3
<u> </u>	Differentiating products, quotients, implicit and parametric functions.	6
<u>d</u>	Second derivatives (rates of change of gradient, inflections)	2
<u>e</u>	Rates of change problems* (including growth and kinematics)	3
	*see Integration (part 2) - Differential equations	
9	Numerical methods*	
<u>a</u>	Location of roots	1
<u>b</u>	Solving by iterative methods (knowledge of 'staircase and cobweb' diagrams)	3
<u>c</u>	Newton-Raphson method	2
<u>d</u>	Problem solving	2
	See Integration (part 2) for the trapezium rule	
10	Integration (part 1)	
<u>a</u>	Integrating χ_{i}^{*} (including when $n = -1$), exponentials and trigonometric functions	4
<u>b</u>	Using the reverse of differentiation, and using trigonometric identities to manipulate integrals	5
11	Integration (part 2)	
<u>a</u>	Integration by substitution	4
<u>b</u>	Integration by parts	3
<u>c</u>	Use of partial fractions	2
<u>d</u>	Areas under graphs or between two curves, including understanding the area is the limit of a sum (using sigma notation)	4
<u>e</u>	The trapezium rule	2
ţ	Differential equations (including knowledge of the family of solution curves)	4
12	Vectors (3D): Use of vectors in three dimensions; knowledge of column vectors and i , j and k unit vectors	5
		120 hours

Year 2: Remaining A Level Mathematics applied content Statistics and Mechanics

U	iit	Title	Estimated hours
		Section A – Statistics	
1		Regression and correlation	
	<u>a</u>	Change of variable	2
	<u>b</u>	Correlation coefficients	5
		Statistical hypothesis testing for zero correlation	
2		Probability	
	<u>a</u>	Using set notation for probability	5
		Conditional probability	· · · · · ·
	b	Questioning assumptions in probability	2
3		The Normal distribution	
	<u>a</u>	Understand and use the Normal distribution	49
	<u>b</u>	Use the Normal distribution as an approximation to the binomial	
		distribution	5
		Selecting the appropriate distribution	
	<u>C</u>	Statistical hypothesis testing for the mean of the Normal distribution	6
			30 hours
		Section B – Mechanics	-
4		Moments: Forces' turning effect	5
5		Forces at any angle	
	<u>a</u>	Resolving forces	3
	<u>b</u>	Friction forces (including coefficient of friction μ)	3
<u>6</u>		Applications of kinematics: Projectiles	eb.
7		Applications of forces	
	<u>a</u>	Equilibrium and statics of a particle (including ladder problems)	4
	<u>b</u>	Dynamics of a particle	4
8		Further kinematics	
	<u>a</u>	Constant acceleration (equations of motion in 2D; the j, j system)	3
	b	Variable acceleration (use of calculus and finding vectors \dot{r} and \ddot{r} at a given time)	3
			30 hours